Emergent Tangled Graph Representations for Atari Game Playing Agents

Stephen Kelly and Malcolm I. Heywood Dalhousie University, NS, Canada

Overview

Atari Video Games

- high-dimensional
- partially observable, stochastic
- delayed rewards

Emergent Tangled Program Graphs (TPG)

- emergent modularity, open-ended evolution
- solution complexity scales through interaction with environment
- agent behaviours competitive with deep learning while being significantly simpler

Atari 2600 Video Games

Hundreds of game titles

Humans and artificial agents use the same game interface:

- High-dimensional input space:
 Screen as Pixel Matrix, updated at 60Hz
- 18 actions (Joystick Positions):

Atari 2600 Screen Preprocessing

• Game entities 'flicker' over sequential frames, implies state is partially observable

Emergent Behaviour

• Organism adapts through interaction with environment

Emergent Behaviour

- Reward (game score) only informative after many interactions
- Organism's objective: maximize long-term reward

Genetic Programming (GP)

Teams of Programs

Symbiotic Bid-Based (SBB) Framework (Lichodzijewski, 2011)

Program

Teams of Programs

- team represents complete decision-making policy
- program with highest bid at current time runs action

Teams of Programs

- Team and Program populations coevolved
- Fitness assigned to teams only
- Fixed number of teams are deleted/introduced each generation

Initial Populations

• Single team of programs represents smallest stand-alone decision-making entity (module)

Initial Populations

Evolved Populations

- Multi-team *policy graphs* emerge
- Decision-making begins at root team (t_3)

Only *root* teams (t_3) have fitness evaluated and are modified by variation operators:

- Manageable search space
- Incremental development of policies (protects 'lower-level' complex structures)

Initial Policies

 One root→leaf path for each decision

Emergent Modularity

Adapted Visual Field in TPG

Ms. Pac-Man Screen

Battle Zone Screen

Ms. Pac-Man AVF

Battle Zone AVF

Complexity

• As policies complexify, cost of decision-making remains low

Complexity

Deep Q Network (DQN)

• Entire network contributes to each decision

Complexity: Training Cost

Atari 2600 Results

Game	\mathbf{DQN}	HNEAT	Hum	TPG	Tms	Ins	%IP
Alien	$3069(\pm 1093)$	1586	6875	3382.7 (±1364)	46	455	56
Amidar	$739.5(\pm 3024)$	184.4	1676	$398.4(\pm 91)$	63	812	69
Asterix	$6012(\pm 1744)$	2340	8503	$2400(\pm 505)$	42	414	51
Asteroids	$1629(\pm 542)$	1694	13157	$3050.7(\pm 947)$	13	346	23
BankHeist	$429.7(\pm 650)$	214	734.4	$1051(\pm 56)$	58	572	65
BattleZone	$26300(\pm 7725)$	36200	37800	$47233.4(\pm 11924)$	4	123	11
Bowling	$42.4(\pm 88)$	135.8	154.8	$223.7(\pm 1)$	56	585	57
Centipede	$8309(\pm 5237)$	25275.2	11963	$34731.7(\pm 12333)$	28	516	39
C.Command	$6687(\pm 2916)$	3960	9882	$7010(\pm 2861)$	51	280	58
DoubleDunk	$-18.1(\pm 2.6)$	2	-15.5	$2(\pm 0)$	4	116	6
Frostbite	$328.3(\pm 250.5)$	2260	4335	8144.4 (±1213)	21	382	28
Gravitar	$306.7(\pm 223.9)$	370	2672	$786.7(\pm 503)$	13	496	36
M'sRevenge	0	0	4367	0(±0)	18	55	28
Ms.Pac-Man	$2311(\pm 525)$	3408	15693	$5156(\pm 1089)$	111	1036	83
PrivateEye	$1788(\pm 5473)$	10747.4	69571	15028.3(± 24)	59	938	60
RiverRaid	8316 (±1049)	2616	13513	$3884.7(\pm 566)$	67	660	64
Seaquest	$5286 (\pm 1310)$	716	20182	$1368(\pm 443)$	22	392	37
Venture	$380(\pm 238.6)$	NA	1188	$576.7(\pm 192)$	3	165	7
WizardOfWor	$3393(\pm 2019)$	3360	4757	$5196.7(\pm 2550)$	17	247	31
Zaxxon	$4977(\pm 1235)$	3000	9173	6233.4 (± 1018)	20	424	33

Conclusion

- Tangled Program Graph (TPG) representation is proposed
- TPG policies are competitive with deep learning in Atari video games
- Critical benefits:

- 1) Simplicity: Policies start simple and complexify through interaction with the task (solution complexity is a learned property)
- 2) State space selectivity: Policies learn how to sub-sample from high-dimensional sensory inputs and hierarchically organize decisions made in each region

Future Work

Multi-Task Learning in Atari Video Games

Still working from raw screen capture, a single evolutionary run produces:

- champion policies for multiple game titles
- a single policy capable of playing multiple game titles

Stephen Kelly and Malcolm I. Heywood. Multi-Task Learning in Atari Video Games with Emergent Tangled Program Graphs. In Proceedings of the 2017 Genetic and Evolutionary Computation Conference (GECCO '17)