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Abstract

Half-field Offense (HFO) is a sub-task of Robocup 2D Simulated Soccer. HFO is a challenging, multi-agent
machine learning problem in which a team of offense players attempt to manoeuvre the ball past a defending
team and around the goalie in order to score. The agent’s sensors and actuators are noisy, making the problem
highly stochastic and partially observable. These same real-world characteristics have made Keepaway soccer,
which represents one sub-task of HFO, a popular testbed in the reinforcement learning and task-transfer literature
in particular. We demonstrate how policies initially evolved for Keepaway can be reused within a symbiotic
framework for coevolving policies in genetic programming (GP), with no additional training or transfer function,
in order to improve learning in the HFO task. Moreover, the highly modular policies discovered by GP are shown
to be significantly less complex than solutions based on traditional value-function optimization while achieving
the same level of play in HFO.

1 Introduction

Task domains in which credit assignment is delayed imply that the learning agent is required to perform multiple
interactions with the environment before feedback is received, or reinforcement learning (RL) [19]. Games poten-
tially represent a generic example of a task with delayed feedback. The goal of the learning agent is to discover
a policy to play the game at a suitably challenging level. However, when scaling RL to increasingly difficult task
domains it is not always possible to directly solve the original task formulation. For example, the number of
interactions with the task might be too costly to perform or there is complete disengagement between the learner
and task, i.e. no ‘learning gradient’.

One approach to deal with this issue is to first learn policies for some source task and then ‘transfer’ this to the
required target task [21, 20]. In this work we are interested in a framework for task transfer under GP in which
policies are constructed hierarchically, or a policy tree. First, lower level source / leaf policies are evolved for
related but different source task(s). A second phase of evolution is conducted to learn how to reuse the source /
leaf policies under the target task by evolving a higher level target policy.

We empirically test this 2-phase approach for hierarchical policy reuse under the challenging multi-agent soccer
domain of Half-field Offense (HFO). In phase 1, policies are evolved under two independent source tasks: keepaway
(which evolves policies for retaining possession of the ball) and shooting on the goal. Phase 2 evolves a policy for
the target task of HFO by learning how to reuse a subset of the previously evolved behaviours. HFO is much closer
to the full-scale Robocup soccer task and requires one team to defend their goal and the other team to score (the
offense team has no goal or goalie). The objective, state, and action spaces are not the same for source and target
tasks, a criteria for meaningful task transfer [21, 20]. We demonstrate that the final explicitly hierarchical policy
(tree) achieves an equivalent level of performance as the current RL state-of-the-art, but at a fraction of the model
complexity.

The architecture used to evolve policies is both highly modular and hierarchical. Specifically, a symbiotic bid-
based (SBB) framework is used in which genetic algorithm (GA) and GP populations simultaneously coevolve to
identify policies, i.e. programs are coevolved to collectively decompose the task and / or reuse previously evolved
policies. Such a framework was applied to tasks that could be solved without task transfer [13, 4, 11]. Indeed,
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the SBB framework has been shown to be capable of strong performance under Keepaway [10], but appears to be
comparatively poor at HFO. This work represents the first instance in which task transfer is used in combination
with SBB to address a task in which SBB would otherwise fail to reach state-of-the-art levels of performance.

Section 2 details the nature of the source and target task domains. The formulation assumed for SBB is
described in Section 3. The approach to combining SBB with task transfer is established in Section 4 and the
experimental study detailed in Section 5. Section 6 concludes the paper.

2 Task characterization

Robocup 2D Simulated Soccer is a widely-used environment for evaluating multi-agent machine learning systems.
However, the full game of soccer is often too complex for a tabula rasa approach, i.e. learning agents try to master
the entire task with a single monolithic policy and no prior task decomposition [17]. Thus, researchers have
focused on sub-tasks of the full game [18, 16, 8, 14, 22, 7]. Keepaway and HFO soccer represent interesting
reinforcement learning tasks in that they are: 1) multi-agent; 2) stochastic and non-Markovian; 3) utilize real-
valued state variables; and 4) can be parameterized to represent a family of incrementally more difficult tasks. It
is the latter property that has seen their recommendation as a benchmark for assessing the utility of reinforcement
learning algorithms [8, 21].

2.1 Keepaway Task

Keepaway represents one sub-task of Robocup Soccer in which a team of K keepers tries to maintain possession of
the ball while an opposing team of K − 1 takers attempt to gain possession [16]. The goal is for keepers to learn
a policy that maximizes the length of play against the takers, which follow a pre-specified behaviour. The game
ends if the ball is kicked out of bounds or captured by the takers. When a game ends, each keeper receives the
game duration in milliseconds as a reward signal.

In this work we are specifically interested in a 4v3, or K = 4, version of the task. Our version of Keepaway is
played on a 60× 60 meter field, instead of the more common 25× 25 meter bounding box, in order to increase the
compatibility with the HFO task. The game is initialized with keepers in four corners of a 15× 15 meter square at
centre field, the ball placed near one keeper, and the takers in the centre. Keepers learn to deploy a set of domain-
specific macro-actions {hold, getOpen, pass(k)}, at discrete timesteps of 100 milliseconds. Each macro-action may
last more than one timestep, and control is returned to the player when the macro-action terminates. A keeper in
possession of the ball has the option of either hold or pass(k), where k indexes one of its K− 1 teammates. Keepers
not in possession of the ball automatically select the getOpen macro-action.

At each timestep, keepers receive state information in the form of 11 real-valued distance and angle sensor
inputs that describe the location of other players on the field (Table 1). The sensors are noisy, thus players must
cope with inaccurate state information. Furthermore, the players’ actuators are unreliable, often resulting in
inaccurate passes and fumbled attempts to hold the ball.

2.2 Half-field Offense Task

Half-field offense is another sub-task of Robocup Soccer with significantly more complexity than Keepaway [8]. In
HFO, a team of offense players tries to manoeuvre the ball past a defending team and around the goalie in order
to score. A game ends if the ball is kicked out of bounds, captured by an outfield defense player or the goalie, or
a goal is scored. The defense team in HFO follow a pre-specified behaviour defined by the original task [8]. Each
offense player receives one reward signal of either {0.8, 0.9, 2} for end-game conditions {captured by outfield defense
or kicked out of bounds, caught by goalie, goal scored}.

We are specifically interested in 4v4 HFO, in which the offense team has 4 players while the defense team is
made up of 3 outfield defenders plus a goalie. HFO is played on one half of the full soccer field. All outfield
players are initialized within a 15× 15 meter square as in Keepaway, but in HFO the centre of the initialization box
is stochastically placed somewhere on the field roughly 55 meters from the goal. Naturally, the goalie is initialized
in the goal region.

Offense players in HFO learn to deploy a slightly different set of macro-actions than in the Keepaway task.
Their options at each timestep are shoot, dribble, getOpen, pass(k). Thus, an offense player in possession of the
ball has the option to either dribble towards the goal, pass to a teammate, or shoot. As per the Keepaway task,
each macro-action may last more than one timestep and control is returned to the player when the macro-action
terminates. In addition to the modified action space, the HFO task has 6 additional sensor inputs relative to the
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Table 1: Sensor inputs for the 4v3 Half-field Keepaway task and 4v4 Half-field Offense task. Pp is the player in
possession of the ball. The rest of the players on Pp’s team are numbered relative to their distance from Pp with
P1 being the closest. ‘Opponent’ refers to any taker in the Keepaway task and any ‘defense’ player in the HFO
task. All sensor inputs are real-valued. Angle values range from 0 ◦ to 360 ◦ and distance values range from 0 to
approximately 85 meters.
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a dist(Pp, P1) Distance from Pp to closest teammate.
b dist(Pp, P2) Distance from Pp to second-closest teammate.
c dist(Pp, P3) Distance from Pp to third-closest teammate
d dist(P1, Omin) Distance from P1 to closest opponent.
e dist(P2, Omin) Distance from P2 to closest opponent.
f dist(P3, Omin) Distance from P3 to closest opponent.
g minangle(P1, Op, Omin) Min. angle, with vertex at Pp, between P1 and any opponent.
h minangle(P2, Op, Omin) Min. angle, with vertex at Pp, between P2 and any opponent.
i minangle(P3, Op, Omin) Min. angle, with vertex at Pp, between P3 and any opponent.
j mindist(Pp, ODcone) Min. distance from Pp to any player in the dribble cone. The dribble cone is

a cone with half angle 60 ◦ with its vertex at Pp and axis passing through the
centre of the goal. Dcone is the set of defenders in the dribble cone.

k dist(Pp, Omin) Distance from Pp to closest opponent.
l dist(Pp, GL) Distance from Pp to goal line.
m dist(P1, GL) Distance from P1 to goal line.
n dist(P2, GL) Distance from P2 to goal line.
o dist(P3, GL) Distance from P3 to goal line.
p maxangle(Pp, Goal) Max. angle with vertex at Pp, formed by rays connecting Pp and goalposts or

opponents in the goal cone, which is the triangle formed by Pp and the two
goalposts.

q dist(Pp, Goalie) Distance from Pp to the goalie.

Keepaway task (Table 1). The additional sensors summarize distance to the goal for each offense player and the
angle of the maximum scoring window for the player with the ball, i.e. how open the net is (Figure 1). As in
Keepaway, all sensor inputs and actuators are unreliable. Readers are refereed to the original HFO paper for a
complete definition of the task [8].

3 Symbiotic Bid-Based GP

Symbiotic Bid-Based GP (SBB) is a hierarchical framework for symbiotically coevolving policies, or decomposing
the task, over two distinct phases of evolution (Figure 2).[13, 4, 11, 10]. The first phase produces a library of di-
verse, specialist policies of limited capability. The second phase builds more general and robust policies by reusing
a subset of policies from the first phase, essentially building generalist strategies from multiple specialists. Thus,
diversity maintenance is critical during the first phase of evolution to ensure the identification of a wide range of
specialist behaviours. See [10, 9] for an example of this within the context of the Keepaway task. Policies are rep-
resented by two distinct populations within the SBB algorithm: a host GA population defines group membership;
and a symbiont population defines a pool of GP individuals that can potentially appear in a host group.

This section gives an overview of the components of SBB that are critical to understanding this work. Relative
to previous instances of the SBB framework for reinforcement learning tasks ([13, 4, 11, 10]), this work adopts a
more general approach to diversity maintenance as well as having to explicitly address the issue of knowledge
transfer between different tasks.

3.1 Programs

The basic building blocks in SBB are linear genetic programs [1], or register machines, consisting of a sequence of
instructions that operate on sensor inputs or internal registers. We refer to these programs as symbionts, because
their role in the larger algorithm is inspired by biological symbiosis [12]. Each symbiont is associated with one
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Figure 1: Sample sensor inputs for the 4v4 Half-field Offense task. See Table 1 for full description.

Phase 2 
Target 

Policies

Phase 1 
Source / Leaf

Policies

dribble
pass1

pass2
shoot

Soccer
Environment

Host 
Population

Symbiont 
Population

Figure 2: Constructing policy trees through SBB. Two independent phases are assumed. Each phase defines
policies in terms of groups of programs (host and symbiont). Phase 1 identifies a diverse set of relatively simple
‘source / leaf’ policies. Phase 2 learns how to reuse phase 1 (source / leaf) policies for solving a different target
task.
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domain-specific action, or atomic action, from the task domain.1 For example {hold, getOpen, pass(k)} in the
Keepaway task (Section 2.1). Given all sensor inputs in the current timestep, the program outputs a single real
valued ‘bid’, which expresses how confident this symbiont is about using its particular action, given the current
state of the environment. Determining which of the available sensor inputs are actually used in the program, as
well as the number of instructions and their operations, are both emergent properties of the evolutionary process.
Variation operators modify symbionts by adding and/or removing instructions from the program, flipping a single
bit in an instruction, or changing the symbiont’s atomic action [12].

3.2 Policies

A single symbiont cannot represent a policy for any task because symbionts are only associated with a single
action (Section 3.1). Therefore, a policy is constructed from a cooperative group of symbionts. These groups are
defined by members of the host population, hi, Figure 2. For a policy to make a decision at any point in time,
each symbiont identified by the host (sym ∈ hi) must observe the current sensor inputs and execute its program,
resulting in a ‘bid’. The policy will then deploy the action of the symbiont with the highest bid. Algorithm 1

summarizes this process under a generic Robocup soccer task. Note that policy hi is deployed homogeneously
across all learning agents.

Algorithm 1 Generic process for SBB to determine an action for the player in possession of the ball in Robocup
Soccer, given a host policy hi. task denotes the soccer simulator. The ‘fail’ condition may correspond, for example,
to an opponent intercepting the ball or the ball exceeding the field boundary. Step 1f represents a reference to a
previously evolved (source) policy, as encountered in phase 2.

1. DO

(a) Present the state variables describing the current state for the player p in possession of the ball, or~sp(ts)
to host hi;

(b) ∀sym ∈ hi, execute the symbiont programs to establish the corresponding symbiont bid, or
sym(bid(~sp(ts)));

(c) Identify the ‘winning’ symbiont as that with the maximum bid from host hi,
sym∗ = argsym∈hi

max[sym(bid(~sp(ts)))];

(d) IF (sym∗(action) == atomic action)

(e) THEN Present the action from the winning symbiont to the soccer simulator, or
~s(ts = ts + 1)← task← sym∗(action)

(f) ELSE hi = sym∗(action)
Call [Algorithm 1]

2. WHILE (!fail)

There is no reason why a host (policy) cannot contain two symbionts with the same action. This actually
occurs frequently because a symbiont essentially learns a context, relative to sensor inputs, for deploying its
action. This context is by definition specific to a particular region of the policy space, thus two symbionts may
develop different contexts for the same atomic action. The bidding framework is the mechanism for facilitating task
decomposition between symbionts in a host, and the nature of this decomposition defines the policy’s behaviour
in the environment.

The same symbiont may function effectively in multiple hosts, each with a different compliment of group
members. Hosts are initialized with between 2 and 5 symbionts. Variation operators may remove symbionts from
the host, add an existing symbiont from the symbiont population to the host, or create a new symbiont by cloning
an existing host-member and applying the symbiont variation operators to ensure that it is unique [12]. Thus, the
number of symbionts in a host varies over time subject to a minimum of 2 and maximum of ω. In each generation,
the selection operator deletes the worst performing Mgap hosts. Symbionts no longer associated with any host
are assumed to be ineffective and are also deleted.

There is no concept of symbiont fitness, only the knowledge of whether or not it is useful in any host. In effect
we are assuming multi-level selection in which a policy is only evaluated as a whole as opposed to the sum of its

1Section 3.4 generalizes this to previously evolved SBB individuals.
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parts [15]. The host population size, Msize, remains fixed throughout evolution while the symbiont population
size varies. In order to encourage the development of a variety of policies by the host population, special attention
is given to diversity maintenance (Section 3.3). Previous research has established the significance of diversity
maintenance under multiple RL tasks [14, 6, 4, 3, 10, 9].

3.3 Diversity Mechanisms

In Robocup Soccer, the fitness of a policy is the mean reward across all games played. Fitness is only assigned to
the host under evaluation. However, in order to promote population diversity, each host’s novelty must also factor
into the selection process, where novelty refers to the degree of similarity between a host and all other members
of the same population. Several methods to balance fitness and novelty exist, including fitness sharing, crowding,
or multi-objective optimization. In this work we adopt a simple linear combination of fitness and novelty [2], thus
each host’s performance is defined prior to selection:

F (hi) = (1− p) · Fit(hi) + p · Nov(hi) (1)

where Fit and Nov are the normalized fitness and novelty of host i, and p is a parameter to control the relative
weight of novelty. The novelty component requires a method for measuring the ‘distance’ between each pair
of hosts, discussed below. Moreover, rather than assuming a single measure of diversity, we switch between
two different distance measures every τ = 10 generations. Switching between dissimilar distance metrics avoids
introducing yet another scalar weighting parameter, and has been shown to be as effective as explicitly multi-
objective formulations [3].

3.3.1 Symbiont-utility Distance Metric

A symbiont-utility distance metric is used to characterize which symbionts are active within a host.2 A symbiont
is considered active if it has scored a winning bid, and thus suggested an action for the task domain, at least once
during the life of the host. The distance between hosts is summarized as the ratio of active symbionts common to
both hosts. Thus, the distance between hosts i and k is

dist(hi, hk) = 1− Symactive(hi) ∩ Symactive(hk)

Symactive(hi) ∪ Symactive(hk)
(2)

where Symactive(hx) represents the set of active symbionts in host x. p = 0.2 when using this diversity metric in
Equation 1. Note that this diversity metric is task independent.

3.3.2 Behavioural Distance Metric

A behavioural distance metric characterizes a host by how it interacts with the environment. At each decision
point in a game, the state (11 real-valued state variables in the case of 4v3 Keepaway) and subsequent action
taken by the host are recorded. Each state variable is discretized to [0, 1, 2], or low, medium, high. Thus, for each
training game a profile vector is recorded, ~p = [{a(t), s(t)}, t ∈ T], where a(t) is the atomic action taken, s(t) is the
discretized state observation, and T represents every decision point in the associated game. Note that this method
of characterizing behaviour is also task-independent. Hosts maintain a historical record of the profile ~p for every
game played. We define ~P to be the concatenation of all profile vectors ~p in a host’s historical record. Behavioural
distance between a pair of hosts can now be summarized as the Normalized Compression Distance [6] between
their corresponding concatenated profile vectors: dist(hi, hk) = ncd(~Pi, ~Pk). p = 0.4 when using behavioural
diversity in Equation 1.

3.4 Policy Trees

After a number of generations, the host population may not contain any suitable solutions [13, 4, 11, 10, 9].
However, diversity maintenance encourages a variety of different behaviours to be present (Section 3.3). These
policies can be reused as building blocks within larger policy trees. Thus, a new phase of evolution begins with an
entirely new SBB initialization (Figure 2 ‘Phase 2’). The only difference being that a symbiont in phase 2 references
a policy previously evolved during phase 1 instead of an atomic action. Thus, symbionts at phase 2 are learning
the appropriate context(s) in which to deploy previously evolved source policies which are selected and cached

2The metric adopted is motivated by the approach taken in [14] for promoting diversity under a neuro-evolutionary setting.
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from the independent evolutionary cycle of ‘phase 1’. The selection process is detailed in Section 4.1.2. At present
only one level of the policy tree undergoes development at a time, thus policies identified during phase 1 are
‘frozen’ during phase 2.

When evaluating a policy in phase 2, Algorithm 1 is again called. However, this time the winning action at
Step 1c is a reference to a previously evolved source / leaf policy from phase 1. Algorithm 1 is then recursively
called at Step 1f in order to resolve which symbiont from the source / leaf policy is selected and therefore what
atomic action is deployed (Step 1e).

Conceptually, policy trees learn to combine multiple, diverse specialist policies into a single generalist policy,
a process which has been demonstrated in several previous works [13, 4, 11, 10]. The major contribution of this
study is to show that policy trees can be used to transfer knowledge from a source task to a related, but more
complex target task. Section 4 details how this is achieved with 3 sub-tasks of Robocup Soccer.

4 Knowledge Transfer in SBB

Inter-task knowledge transfer refers to the ability of a learning algorithm to leverage experience gained by interact-
ing with a source task environment in order to improve some aspect of learning in a target task [21, 20]. Keepaway
soccer is clearly a sub-task of HFO. For example, from the stochastic start position in HFO (Section 2.2), offensive
players essentially have to play Keepaway and dribble towards the goal before trying to score. It follows that
knowledge gained while learning to play Keepaway should be useful in the context of HFO.

The problem of transfer from 4v3 Keepaway to HFO does not require an independent mapping interface be-
tween feature or action spaces. This is possible because most Keepaway inputs and actions have direct equivalents
within the HFO task (Table 1). The one exception being the hold action in Keepaway, which is interpreted as a
dribble-towards-goal action under HFO. It is therefore reasonable to deploy a policy trained in the 4v3 Keepaway
task directly under HFO without modification. However, it will not represent a successful HFO policy on its own
because in Keepaway there is no concept of goal scoring, or even a macro-action to support scoring goals. Fur-
thermore, the ball-handling skills under HFO are different, requiring the players to maintain possession of the ball
and move toward the goal region. Thus, additional capabilities are necessary in order to attempt HFO. Sections
4.1 and 4.2 describe how SBB policy trees can discover these policies over 2 phases of evolution.

4.1 Phase 1: Multiple Source Tasks

In addition to ball handling, which we aim to ‘transfer’ from Keepaway as a source task, the other basic component
to HFO is scoring goals. In order to design an appropriate source task scenario to focus on goal scoring, we modify
the HFO environment to restrict the initial position of players to within 15 meters of the goal. From this position,
offense players no longer need to manoeuvre the ball down field and can therefore concentrate on scoring goals.
During phase 1, multiple policies are evolved independently in each of the two different source tasks: Keepaway
and Scoring. From these two groups, a subset of policies are selected to represent the source task policies, which will
be combined in a policy tree for learning the target task, HFO. The sequence of events promoting this development
takes the form of the following 3 steps.

4.1.1 Phase 1 Policy Development

First, we conduct N = 10 independent, single-phase runs of SBB in the Keepaway task. Each run is parameterized
as per Table 2 with diversity maintenance (Section 3.3). After removing Mgap policies at the final generation3, each
run produces 90 unique policies for a combined total over N runs of 900 Keepaway policies. The primary use for
Keepaway policies will be to maintain possession of the ball. Successful transfer to the HFO task will generalize
this to moving to the goal region. Likewise, N = 10 independent, single-phase runs of SBB are performed in the
Scoring task, also returning a total of 900 candidate policies.

4.1.2 Pareto Ranking of Phase 1 Policies

Having established a pool of Keepaway and goal scoring behaviours (source tasks) we now adopt the following
process to filter the number of policies before phase 2 of SBB (Figure 2). Each of the 900 Keepaway behaviours
are deployed for 10 trial games in the full HFO environment. Information from two sensors are then used to
characterize the utility of candidate Keepaway policies based on the following 2 objectives. Distance to Goal

3SBB is a breeder model where the worst Mgap individuals are replaced at each generation [13, 4, 11, 10].
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(Table 1 – mean of sensor input l): better policies should minimize the mean of this input over 10 games. Distance
to closest player in dribble cone (Table 1 – mean of sensor input j): provides a sense of how congested the player
in possession of the ball is, and how much space it has to dribble towards the goal without loosing possession.
Hence, better policies should maximize this property.

Given these two objectives, we find the set of Pareto non-dominated policies4 from the pool of 900 candidates,
which in this case returns a subset of 11 Keepaway policies.

In the case of Scoring behaviours, candidate Scoring policies are also deployed for 10 trial games in the HFO
environment (modified for scoring-only as per Section 4.1) and ranked based on 3 objectives: 1) maximize sensor
input j to reduce congestion (see above); 2) maximize sensor input p, which indicates the degree to which the goal
is ’open’; and 3) maximize the main HFO objective, or number of goals scored. Given these 3 objectives, taking the
set of Pareto non-dominated policies from the pool of 900 candidates returns a subset of 7 goal scoring policies.

4.1.3 Recombination of Source Task Policies

A pool of policies developed w.r.t. the source tasks have now been identified. These represent the ‘actions’
available during a second phase of evolution (Figure 2). SBB phase 2 constructs a ‘root node’ that learns to switch
between source / leaf policies to solve the HFO task.

4.2 Phase 2: Target Task

In SBB phase 2, policy trees will be evolved for the HFO task, where each policy tree may combine any of the
18 source policies identified in phase 1 (Section 4.1). However, such a simplistic decomposition of HFO into
two source tasks is just a starting point. Each source policy will have a unique specialization care of diversity
maintenance (see Section 3.3) and the Pareto selection process of Section 4.1. The policy identified by SBB during
phase 2 essentially evolves a root node in a policy tree. Such a root node identifies under what conditions to
switch between two or more source policies (as previously evolved in phase 1). Thus, the potential exists to extend
and recombine existing source policies into a new behaviour, or conversely associate a previous policy with a new
action as in the case of learning to dribble the ball.

Phase 2 is conducted without diversity maintenance as the objective is strictly exploitative, i.e. p = 0 in Eqn. 1.
Each run produces Msize/2 policy tree root nodes. A post-training validation phase is then conducted, in which
each policy tree is evaluated over an additional 25 games. The policy with the highest average reward (Section 2.2)
on validation is selected as champion of the run. Finally, due to the stochasticity of the task5, 1000 post-training
test games are required to provide an accurate measure of performance for the single champion policy from each
run.

5 Results

Three algorithms will be benchmarked: 1) SBB-T: Hierarchical SBB with transfer as per Section 4; 2) SBB: Hi-
erarchical SBB without transfer or prior task decomposition. In this case the full HFO task is assumed during
phase 1 and 2 of SBB solutions (Figure 2). The 3-objective Pareto ranking process, identical to that used for the
Scoring source task, is used to filter phase 1 policies down to 14 source / leaf policies; and 3) SarsaRBF: The Sarsa
Temporal Difference Method with Radial Basis Functions. SarsaRBF represents the current state-of-the-art in the
HFO task [8].

As per previous research, the Robocup Soccer Server6 simulates the 2D soccer environment. Code from the
designers of Keepaway7 and HFO8 provides full implementation of the tasks.

Table 2 summarizes the parameterization assumed for SBB-T. In the case of the number of generations (tmax),
two limits appear at phase 1 on account of the goal scoring task being easier than Keepaway. Parameterizing
SBB assumes the same parameterization as SBB-T except in the case of the phase 1 population size and generation
limit. SBB-T evolves Keepaway and Scoring behaviours using independent populations of size 180 for 250 and
60 generations respectively. Thus, SBB evolves a single population of size Msize = 2× 180 for a total of tmax =
250 + 60 generations.

4A solution ai is said to dominate another solution aj, if both of the following conditions are true: ai � aj ↔ ∀k[ fk(ai) ≥ fk(aj)] ∧
∃m[ fm(ai) > fm(aj)].

5Sensor and actuator noise, as well as random start conditions for takers, keepers, and ball in each game.
6http://sourceforge.net/apps/mediawiki/sserver
7http://www.cs.utexas.edu/~AustinVilla/sim/keepaway
8http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense
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Table 2: Parameterization of Host and Symbiont populations. pmx denotes a mutation operator in which: x ∈ {d, a}
are the prob. of deleting or adding a symbiont respectively; x ∈ {m, n} are the prob. of creating a new symbiont
or changing the symbiont action respectively.

Host (GA) population
Parameter Value Parameter Value

tmax phase 1 250, 60 ω 30

tmax phase 2 125 teval 10

Msize 180 Mgap 50%
pmd 0.7 pma 0.7
pmm 0.2 pmn 0.1

Symbiont (GP) population
numRegisters 8 maxProgSize 96

pdelete, padd 0.5 pmutate, pswap 1.0
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Figure 3: Post-training test results for each algorithm over 1000 games. Box plots summarize the quartile distribu-
tion over 10 independent runs. SarsaRBF represents a current state-of-the-art reinforcement learner for the HFO
task; SBB-T is hierarchical SBB with task transfer; SBB is hierarchical SBB without task transfer.

The fitness of each individual is determined following play against the predefined HFO defenders in at most
teval stochastically initialized games. Such a constraint is enforced on account of the computational overhead in
estimating fitness in this task domain. The total generations performed at each phase represent a computational
cost of ≈ 24hrs. During phase 2 a total of 20 runs are performed for each SBB experiment, of which results
are reported on the top 10 as defined by validation performance post training (but before test). In short, the
computational cost of the task precludes fitness evaluation over larger populations or more games per fitness
evaluation. Other researchers have adopted similar schemes for identifying champion solutions for evaluating
test performance [5]. Moreover, on the easier Keepaway task, neuro-evolutionary solutions have been limited to
performing 5 runs alone, again on account of the computational cost of performing runs [14, 22].

5.1 Test Performance

Figure 3 reports test performance for the three approaches to learning the HFO task. It is apparent that both
SarsaRBF and SBB-T reach similar levels of performance. Indeed, there is no statistical difference between their
distributions (Mann-Whitney rank test, P < 0.05). SBB is unable to reach a competitive level, P > 0.05 relative to
both SBB-T and SarsaRBF.
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Figure 4: SBB-T solution complexity. Quartile statistics for number of symbionts (programs) per policy and
instructions per program. ‘HFO’ denotes the SBB policy evolved against the target task (phase 2); ‘Keepaway’ and
‘Scoring’ denote the SBB policies evolved against source tasks (phase 1).

5.2 Complexity

All SBB policies are groups of symbionts working cooperatively (Section 3), and symbionts are essentially linear
genetic programs. Thus, we can describe the complexity of a solution by counting the number of symbionts /
instructions per symbiont referenced by a champion policy tree. Recall that two types of source task are employed
during task transfer, denoted ‘Keepaway’ and ‘Scoring’ (Section 4.1). Figure 4 gives the distributions for the
median number of symbionts and median number of instructions per symbiont, where both counts are post-
intron removal [1], over all 10 runs of SBB-T.

For example, an HFO policy consisting of 3 symbionts, which each contain a median instruction count of
≈ 12.2, indexes three source / leaf policies. If two of these correspond to the more complex Keepaway leaf policy,
each consisting of 6 programs with 9.6 instructions each, and the third is a Scoring leaf policy with 2 programs and
8.7 instructions each, then the total instruction count would be 169 instructions. This is in contrast to a SarsaRBF
solution, which contains 16, 320 weight / RBF pairs that need to be calculated at each decision point. Note also
that only one HFO solution (3× 12.2 ≈ 36 instructions) and one Keepaway policy (6× 9.6 ≈ 58 instructions) or
Scoring policy (2× 8.7 ≈ 17 instructions) require evaluation to produce a decision. In short, SBB policies are more
efficient to implement post training. Empirically, the average CPU time required for SarsaRBF to make a decision
over 1000 timesteps is 2.04 ms whereas SBB-T is an order of magnitude faster, requiring only 0.16 ms.
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Figure 5: Example policy tree from the SBB-T experiment. Source / leaf policy ‘K2’ is actually redundant, i.e. can
be replaced by the ‘dribble’ atomic action.

5.3 Solution Analysis

In order to understand the behaviour of policy trees in the HFO task, we can analyze a single champion tree from
the SBB-T experiment. Figure 5 describes one tree that managed to score in 395 of 1000 test games. This policy
tree has 4 active symbionts at the upper level, 3 of which index Keepaway source policies and 1 indexes a Scoring
source policy. There are a total of 9 active symbionts across all source / leaf policies, covering the full scope of
domain-specific atomic actions. To understand the strategy of this policy tree, we can trace the sequence of source
/ leaf policies deployed at each decision point during two HFO games that each ended with a goal for this policy.
Game 1:[ Start K3 K3 K3 K1 K3 K1 K3 K3 K1 K1 K1 S S S S S S Goal]. Game 2: [Start K1 K2 K3 K1 K1 K1 K1 K1 S
K3 S Goal]. It is clear from these traces that the strategy is to interleave different Keepaway source policies while
approaching the goal, then introduce the Scoring source policy shortly before achieving the winning shot. In the
case of Game 1, multiple calls to the Scoring meta-action indicate that some passing occurred near the goal region
before the winning kick on goal. Interestingly, the policy has made use of K2, which is essentially a degenerate
dribble policy, implying that it can be replaced with a dribble atomic action at the symbiont in the upper policy
level.

6 Conclusion

The SBB framework for evolving policy trees has been refined to facilitate the utilization of task transfer. Task
transfer represents a methodology for taking policies identified under source tasks and learning how to extend or
redeploy them to provide policies under a more difficult target task. In this case, the Half-field Offense sub-task of
Robocup soccer is used as the target task, where HFO represents a benchmark known to be more difficult than the
Keepaway task previously employed under task transfer. We show that SBB as originally formulated is not able
to solve this task directly. In order to formulate task transfer for SBB we make the following recommendations: 1)
use multiple source tasks; 2) evolve source task policies with diversity maintenance; and, 3) use Pareto dominance
to refine the number of source task policies before attempting the target task.

The policy trees that were identified using task transfer achieved HFO performance competitive with the
current state-of-the-art, and were significantly simpler. Conversely, it was not possible to evolve SBB policy trees
with comparative performance without task transfer. Future work will continue to investigate mechanisms for
making use of task transfer under SBB policy tree structures.
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